Big data



Big Data refers to the data that is so large that it can not be processed by using traditional methods and techniques. Big data gained force in the early 2000s when analyst D. Laney sectioned the definition of big data as three V’s:

  • Volume: Volume of data is the amount of data. It is estimated that around 2.5 quintillion bytes of data is created per day, which would result in around 40 zettabytes of data being created by 2020 which would be almost 300 times from that of 2005. This is also evident from the fact that nowadays it is not uncommon for large companies to have terabytes or petabytes of data in servers and storage devices. This data helps to shape the future of a company and its actions, all while tracking its progress.

  • Velocity: The growth and impact of data have changed the way we see it. Velocity essentially means the rate at which data is being gathered.

  • Variety: In earlier times data could not be captured structurally. In the world of big data, data usually comes in various unstructured forms like social media posts, server log data, photos, audio, video etc.

The above definition was further modified to include four more V’s which are:

  • Variability: The meaning of words in irregular data can change.

  • Veracity: Veracity deals with exploring a dataset for quality data and systematically cleaning the data for data analysis.

  • Visualization: After the data is analysed 3D and 2D plots are drawn for end-users to understand and act upon.

  • Value: Data must be combined with meticulous analysis and processing to be useful.

Importance of big data:

  • Some big data tools such as Hadoop can help with cost reductions for businesses when it comes to storing large amounts of data.

  • By analysis of big data, one can understand current market conditions.

  • High-speed tools and in-memory analytics help identify new sources of data which help companies analyze data immediately and make quick decisions based on what they have learnt.

  • Big data tools can help with sentiment analysis.

  • Big data analytics can affect all business operations. It includes meeting customer expectations and ensuring marketing campaigns are impactful.

  • Big data can help businesses innovate and re-develop their products.

Applications of Big Data: 

Big Data has many application spread across various industries, some of which are listed below:

  • The SEC(Securities Exchange Commission) uses big data to monitor financial market activity.

  • Retail traders, hedge funds etc. use big data for trade analytics in high-frequency trading, sentiment measurement etc.

  • Spotify uses Hadoop to collect data from its millions of users worldwide and give personalized recommendations to each of its users.

  • Some hospitals are using data collected from cell phone apps to allow doctors to use evidence-based medicine as opposed to administering several lab tested medicines to patients that visit the hospital.

  • In the public service sector, big data is used in financial market analysis, fraud detection, energy exploration, health-related research etc.

  • The FDA(Food and Drug Association) uses big data to identify patterns of food-related illness and diseases.

  • During insurance claims management, predictive analysis is used to offer faster service since massive amounts of data can be analysed mainly in the underwriting stage.

Evidently, Big data has become a huge part of our daily lives. Data Science and Analytics are evolving fields with huge potential. It is essential for professionals to be aware of big data and the terms related to it.

  •  April, 27, 2021
  • Ieesha Deshmukh
We'll never share your email with anyone else.
Save my name, email, and website in this browser for the next time I comment.
Latest Blogs